
www.manaraa.com

Cleidson R. B. De Souza
Information and Computer Science,

University of California, Irvine
Irvine, CA, USA

e-mail: cdesouza@ics.uci.edu
Also at:

Computer Science Department,
Federal University of Pará

Belém, PA, Brazil

Abstract

With the rapid globalization of companies, also the
globalization of software development has become a
reality. Many software projects are now distributed
in diverse sites across the globe. The distance be-
tween these sites creates several problems that did
not exist for the co-located teams. Problems in the
coordination of the activities, as well as in the com-
munication between team members emerge. This
paper presents the most important problems in
global software development, as well as the tech-
niques and tools designed to solve these problems.
Key Words: Global Software Development, Distrib-
uted Software Development, Cooperative Software
Development.

1 Introduction

Nowadays, globalization is a world that has been
heavily explored. Basically, it means that the economical,
cultural and social boundaries of the countries are disap-
pearing. For example, in Brazil you can buy the same
products that you can find in the United States (USA).
The technology innovations are ubiquitous. The cellular
phone roaming feature allows mobile phone users to
travel and keep in touch with friends and coworkers. Cul-
tural barriers are also becoming subtler. In the US, for
example, you can watch the same movies and television
series that are being presented in Brazil.

Software is no exception to this rule. Microsoft, for
example, derived 55% of its sales from outside the
US[Kar, 1999]. Due to different government regulations,
several companies, especially in the telecommunications

domain, need to have development sites in different coun-
tries, in order to get a position in the local market
[HMFG, 2000].

Therefore, these companies need to adapt their proc-
esses, tools, and organizational culture to overcome the
distance between the sites. When the groups are dis-
persed, the sense of working in a team decreases due to
the lack of interaction between the members of different
sites. Also, there is a lack of trust because the members
usually do not have knowledge about overseas’ culture.
Relatively simple activities like discussing requirements
in meetings can not be performed. All these problems
must be understood and properly solved for global soft-
ware teams succeed.

This paper presents the main problems (the chal-
lenges) faced by developers during global (or distributed)
software development, as well as some solutions that
have been proposed and applied (the perspectives). It is
important to note that some solutions are more suitable to
be classified as management techniques, such as provid-
ing training through workshops about the other’s cul-
ture[Car, 2001]. The emphasis of this paper lies on tech-
niques related with software engineering concepts, there-
fore management techniques will be briefly covered.

The rest of this paper is organized as follows. A better
understanding about global software development, their
motivations and advantages are necessary to understand
this paper. Therefore, section 2 presents these concepts.
Then, the next section presents the problems that make
global software development more complex than the tra-
ditional co-located software development. After that, sec-
tion 4 presents solutions to the problems discussed. Fi-
nally, some conclusions are described in section 5.

www.manaraa.com

2 Global Software Development: Defi-
nition and Motivations

In this section, the concept of global software devel-

opment is described as well as the motivations for this
type of work.

2.1 Definition

Global software development, also called distributed,

means that the software development is scattered along
several sites that could be located in different countries
and even continents. Accordingly, a global software team
is defined as separated by a national boundary while ac-
tively collaborating on a common software/system pro-
ject[Car, 2001].

Several companies such as Lucent[HG,1999a] [HG,
1999b][GHP, 1999][HMTG, 2000], IBM, Mo-
torola[BCK+,2001], among others are adopting this
strategy. In fact, according to [CA, 2001] 203 of the US
Fortune 500 companies are engaged in offshore outsourc-
ing. Furthermore, more than 50 nations are currently par-
ticipating in collaborative software development interna-
tionally. Just to mention one example, in India there are
800 firms competing for work globally.

2.2 Motivations

There are several reasons for globally developing

software. Most of them are economical, although there
are some practical and political. For example, global
software development can occur because of business ar-
rangements like[Kar, 1999][HMFD, 2000]:

- mergers and acquisitions to adjust and comple-
ment product lines often lead to new sites becom-
ing part of the company;

- to participate in some markets (specially tele-
communications),government regulations request
the location of some local development opera-
tions; and

- it can make sense for market reasons to locate
parts of the corporation where the market for a
particular technology exists.

Furthermore, the competition for highly technical staff

is driving companies to hire them wherever in the world
the talent can be found. This is another problem since
there is a constant need for more developers, especially in
some countries[Fox, 1999]. As these developers are not
mobile, i.e., they can not just move to other countries, the
development task has become distributed. Another advan-

tage of this approach is that these resources are available
at lower cost[Kar, 1999]. Therefore, companies are find-
ing that it is economically attractive to outsource or code-
velop overseas.

Finally, most corporations, especially those in the
software business, hope that geographic distribution
could lead to round-the-clock development, which offers
the promise of reducing development cycles by increas-
ing the amount of time in the day that software is being
developed. The idea is to have developers working in the
code as much hours as possible during a day, since these
developers work in different time zones. For instance,
when a developers stops to work in the code in Califor-
nia, US another one starts to do it in Bangalore, India.
This concept has been called “follow-the sun”[Carmel,
1999] and, theoretically, can reduce the software devel-
opment time in 50%.

3 Problems

This section summarizes the main problems reported
in the literature about global software development.

Before describing these problems in detail it is neces-
sary to understand why global software development is
different from the traditional co-located development.
The main difference is the distance between the groups of
developers. In fact, the definition presented in the previ-
ous section for global software development teams is
about distance.

This distance imposes several constraints in the tasks
carried during the software development. It exacerbates
coordination and control problems directly or indirectly
through its negative effects on communication[CA,2001].
In fact, there is considerable evidence in literature[PSV,
1994] [HKO+, 1995] which indicates that informal (un-
planned) communication is essential in successful soft-
ware development activities. Developers also rely on this
communication to coordinate your activities by handling
exceptions, correcting mistakes and managing the effects
of all these changes[[HG, 1999b]. Furthermore, the lack
of informal communication also decreases the trust
among teams.

The communication across teams is also difficult be-
cause of the difference between time zones and techno-
logical constraints.

Finally, the physical distance between the members in-
fluence the degree of cooperation among them[KS,
1995]: the rate at which scientists collaborate spontane-
ously with one another is also a function of distance be-
tween offices. Also, the communication among engineers
decrease with the distance[HMFG, 2000].

www.manaraa.com

Distributed development of software, compared with
non-distributed, introduces delays in the proc-
ess[HMTG,2000]. A delay is an additional time needed to
resolve an issue. So for example, if a part of the design or
code need to be changed, or if someone needs a better
understanding of how some part of the product works,
people at more than one site may need to be involved in
information exchange, negotiation, and so on, in order to
find a solution[HMFG,2001]. In fact, these authors pre-
sents qualitative data showing that these delays can slow
the software development process considerably.

In short, the most important class of problems is re-
lated to the communication, mostly informal, among de-
velopers that is more difficult due to the distance between
the teams. However, other problems also arise such as
lack of trust, difference between time zones, cultural
problems and identification and selection of expertise.
Each one of these problems will be discussed in the fol-
lowing subsections.

3.1 Communication Problems

This is the most important class of problems, since it is
directly affected by the distance between the teams. In
this case, there are two types of problems: Language is-
sues and Lack of Informal Communication.

Language Issues

One of the most obvious problems in a global software

development activity is the language barrier, i.e., since
the groups can be dispersed around the globe, there is no
guarantee that all groups will speak the same language.

Even if a specific language is adopted by the entire
group problems may occur. For example, [HGVF,2001]
report a case study where German and British had misun-
derstandings due to the use of one specific word:
“should”. A German manager said that the British mem-
bers “should” do something while his idea was that they
should “consider” the new task. However, the British
dropped what they were doing and completed the new
task. The difficulty of precise translation of words that
often have somewhat different connotations caused a
significant misunderstanding [HGVF, 2001].

Another example of communication problem is pre-
sented by Anthes[Ant, 2000]. He describes a situation
where a developer had to travel from Swindon to Ger-
many because the test specification said to type a blank
(hit the space key) when the tester got a certain point.
However, the tester was actually typing the word “blank”.

One may think that this kind of misunderstanding is a
problem only when the groups do not communicate using

the same first language, i.e., one of the sites is obliged to
use another language different from their first one. For
example, British and Americans would not have this
problem because both speak English. However, [HGVF,
2001] reports that, even in this case, problems happen: in
American English the word “quite” has a positive mean-
ing, while in British it also can have a negative one mean-
ing that something could have been better. Situations like
that caused confusion sometimes.

Lack of Informal Communication

The second problem of related with communication,

and perhaps, the most important, is the lack of informal
communication. This problem has been reported in stud-
ies by [HG, 199a], [HG, 199b], [Car, 1999] [Car, 2001],
and [CA, 2001].

The idea is quite simple: since the teams are not physi-
cally together, they can not meet each other around the
water cooler, in the hallway or in other public areas.
Therefore, the extent of informal communication is re-
duced. By informal communication, we mean, personal,
peer-oriented and interactive communication in contrast
to formal communication through writing, structured
meetings and other relatively non-interactive and imper-
sonal communication channels[Kraut, 1990].

According to studies in organizational theory and
CSCW (which call these events as opportunistic interac-
tions), this type of communication is very important to
coordinate teams in uncertain tasks such as software de-
velopment. By uncertainty, we mean the unpredictability
of both the software and the tasks that software develop-
ers perform[KS, 1995]. There are several reasons that
make software development an uncertain task. For in-
stance, fluctuating and conflicting requirements[CKI,
1988]. The requirements will appear to fluctuate when the
development team lacks application knowledge and per-
forms an incomplete analysis of the requirements.

In other words, software developers also rely on in-
formal, ad-hoc communication to fill in details, handle
exceptions, correct mistakes and bad predictions, and
manage the effects of all these changes[[HG, 1999b]. As
this type of communication is absent in global software
development the coordination of these tasks is much more
difficult.

Lack of Context

One of the main problems during the communication

between distributed sites is the lack of context. It means
that, sometimes the receiver of a message does not under-
stand the context well enough to determine the question’s

www.manaraa.com

importance. Therefore, the receiver assumed that the mes-
sage is not important taking a long time to answer it. Of
course, this is one of the reasons for the delays in global
software development. The context, in this case, means
the artifacts related with the communication like
diagrams, code, test cases, requirements and so on.

This is a well-know problem in the design rationale lit-
erature[Lee, 1997]. For example, Fischer et al. [FLM,
1991] identified the need for integration of decision-
making (a type of communication) and artifacts in his
experiments where ‘‘... designers were often unable to
judge the relative merits of issues because they could not
see their influence on construction...’’. The solution to this
problem adopted by DR researchers was to integrate the
artifact with the discussion about it. This point is dis-
cussed in section 4.3.

3.2 Coordination Problems

Coordination is the act of integrating each task with
each organizational unit (or team member), so the unit
contributes to the overall objective. In software develop-
ment, it means that different people working on a com-
mon project agree to a common definition of what they
are building, share information, and mesh activities[KS,
1995].

Coordination often requires intense communication,
i.e., the exchange of complete and unambiguous informa-
tion helps the members to reach a common understand-
ing[CA, 2001]. In fact, empirical studies performed by
[PSV, 1994] and [KS, 1995] show that informal commu-
nication is essential to successful software development,
since it helps the members to coordinate their activities.
We already know that in distributed settings, due to the
distance between sites, the informal communication de-
creases, then it is clear that coordination is much more
difficult in global software development.

The critical role of communication in successful coor-
dination leads us to conclude that communication is the
main challenge in global software development. The dis-
cussion about communication in this context was pre-
sented in the previous section (3.1).

3.3 Time zones

[CA, 2001] defines temporal distance as the difference
between the time zones in two different sites. If the tem-
poral distance is great, typically asynchronous technology
is used to support communication. In this case, the advan-
tages of “follow-the-sun” type of work discussed in Sec-
tion 2 can be achieved [Carmel, 2001]. On the other
hand, asynchronous communication is more “poor” than

synchronous: it does not convey information such as the
speed and tone of voice, facial information, body lan-
guage, pauses, etc[Jar, 1998]. Therefore synchronous
communication is more effective and helps to solve con-
flicts faster. A small issue can take days of back-and-
forth discussion over e-mail (asynchronous) to resolve,
but a briefly conversation (synchronous) can quickly clar-
ify the problem [Car, 2001].

However, synchronous communication can be costly
for professionals who complains about the need to com-
promise personal life to speak to colleagues far away
many time zones removed[Carmel, 2001].

In other words, there is a direct dependency among the
temporal distance between the sites, the technology used
for communication and the advantages that can be gained
with global software development.

3.4 Culture

Another important challenge in global software devel-
opment is the cultural differences between team mem-
bers. [CA, 2001] describes two basic types of culture
differences: nationality, the most obvious and the organ-
izational culture.

National culture encompasses an ethnic group’s norm,
values and spoken languages, often delineated by politi-
cal boundaries of the nation state. For example, a typi-
cally American attitude is to reschedule his vacation if a
project is running a week late, however this would not be
done in Europeans countries[Rot, 1998].

Organizational culture encompasses the unit’s norms
and values, it includes the culture of system development,
such as the use of methodologies and project manage-
ment practices. In this case, differences between teams
can lead to lack of trust (see sections 3.5) and makes co-
ordination more difficult.

Differences in national cultures manifest themselves in
different ways like hierarchy issues and the communica-
tion style, while differences in organizational cultures are
materialized in problems with the orientation towards the
software process. Each one of these three problems is
discussed below.

Hierarchy

[HGV, 2000] identified that German developers have

a greater tendency to take a formal approach toward hier-
archy, and tend to be more careful in following hierarchy-
related protocols in contrast to British. Later, Herb-
sleb[Her, 2001] presents his experience with Indians and
Americans. The purpose was to convince two groups of
developers to adopt a Instant Messaging system. While

www.manaraa.com

for Americans the best approach was to talk directly to
the employees, for Indians the approach recommended
and used was to talk to their managers.

In short, the different orientation towards hierarchy in
each country suggests different approaches. These differ-
ences must be understood by project managers and team
leaders.

Communication Style

One example of this issue is the difference between

German and British reported by [Herbsleb, 1999, IEEE].
Germans use a more direct style of communication: they
call someone and immediately say that there is a problem
in the other’s code. In contrast, British tend to expect a
more “polite” approach in which the error is “suggested”
instead of being directly pointed.

This difference influences the team ability to commu-
nicate effectively creating misunderstandings, miscom-
munication, and lack of trust, which can decrease the
productivity.

[Rot, 1998] presents another example where the ter-
minology adopted among organizations was different. In
this case, the word “fixed” have two different meanings
for Americans and Europeans bringing confusion among
team members. For one, it means that the problem was
already solved, while for the other it means that the prob-
lem already was identified and “scheduled” for being
solved. She also describes other words that caused confu-
sion specific to the software development activity.

Orientation towards the process

In the German site studied by [HGV, 2000] the em-

ployees have a high regard for development processes.
They had a defined process that they tended to follow
diligently. On the other hand, the British site does not
have a process and they were particularly willing to aban-
don when situation calls for quickly delivery.

This situation imposed tensions in both sites since
“(...) British think that Germans would follow the process
even when it was going to take too long and cause unnec-
essary delays. From the German perspective the British
developers had little control of their process to begin
with, and were far too ready to abandon the process and
risk compromising technical quality and reliabil-
ity.”[HGV, 2000].

[Car, 2001] suggests the adoption of a common devel-
opment process in order to solve this problem. In his
work, he calls it as “Centripetal Force 5: Software Devel-
opment Methodology”. The adoption of a unified process
can avoid several problems in a global development. A

process defines how a software should be produced,
specifying for example, the products developed along the
process, the milestones, etc. If these items are previously
defined and accepted by all sites, it can help to decrease
disagreements and misunderstandings since these items
are frequently source of these problems between devel-
opment units[Car, 2001].

However, the adoption of a single process must be
carefully evaluated since the learning curve can impact
the delivery of the system[BCK+,2001] as well as its
costs. If this is not possible another solution is a blend of
the processes of the sites, or at least, an agreement on
high level process components such as stages and their
respective entry and exit conditions.

3.5 Lack of Trust

Trust is a recurrent problem in virtual collocated

teams. It is co-related with the poor communication that
happens in these teams due to the distance and the infra-
structure used.

Herbsleb and Grinter[HG, 1999a] observed that
groups in different sites during the beginning of the proc-
ess of the cooperation had little trust in each other. This
reflected in the absence of willingness to communicate
openly and in misunderstandings about the behavior of
each other’s. For example, if someone say “we can not
make these changes”, it was often interpreted as “we do
not want to make these changes” whether it could benefit
the overall project or not. It is clear that this kind of be-
havior can decrease the productivity of the team.

The lack of informal communication also decreases
the trust since these interactions are important to build
interpersonal relationships among member of team, and
therefore trust. The cultural difference among sites can
also contribute to this problem, since similarity with oth-
ers positively reinforces members’ own identities and
contributes to their willingness to trust[Jar, 1998].

3.6 Expertise Identification and Selection

McDonald and Ackerman[MA, 1998] define expertise

as the embodiment of knowledge and skills within indi-
viduals. These authors also distinguish two steps in find-
ing expertise. “Expertise identification is the problem of
knowing what information or special skills other indi-
viduals have. (...) Expertise selection is appropriately
choosing among people with required expertise. If there
are multiple potential experts or people with requisite
expertise, it is necessary to select one (or more) to ask.”
Both steps are harder in global software development. In
fact, the expertise identification problem was reported by

www.manaraa.com

developers as one of their major concerns [HG, 1999b].

Expertise Identification

In this case, the problem is how to identify whom to

contact to in order to solve a specific problem. In a non-
distributed setting, informal communication channels can
be used to find the answer for this question, as well as the
personal network of each employee. However, as previ-
ous discussed, this information can not be used in GSD
because the teams are dispersed around the globe. Since
informal channels are not useful other approaches need to
be used.

For example, one approach used by developers and
reported by [HG, 1999b] was to contact the system ar-
chitect or project manager at the other site because they
had a broad knowledge of who was working on what. In
this case, a formal channel (chain on command) was
used. However, it can create a slow down that reflects on
the time for solving the problem.

Expertise Selection

Now, since one (or more) people with the required ex-

pertise are identified the question is how to decide whom
to ask? In their field study [MA, 1998] observed that de-
velopers use different rules-of-thumb to make their selec-
tion. One of them is based on the workload of the devel-
opers. When the information about the workload is not
available, developers infer this information based on the
word-of-mouth, closed office doors and co-worker’s as-
sessment of one another’s workload[MA, 1998]. In a dis-
tributed setting this type of information is not available,
therefore it makes the process of selection more difficult.

The other techniques identified by [MA,1998] can not
be used to help in the process of expertise selection in a
distributed setting because they are all strongly related
with face-to-face communication. The problem of exper-
tise selection is important and difficult, however it is out
of the scope of this paper.

4 Solutions

There are just a few authors and approaches in the lit-

erature that address the problems in global software de-
velopment. Some of these ideas are more related with
management techniques that should be used in order to
minimize the problems previously described. As this pa-
per is more concerned about software engineering con-

cepts, techniques and tools, these ideas about manage-
ment will be briefly discussed, mainly in sections 4.1 and
4.2. To the interested reader, another interesting ideas are
presented by [Rot, 1998]. The other sections present
some tools identified in the literature.

4.1 The Six Centripetal Forces for Successful
GSD [Car, 2001]

[Car, 2001] presents six solutions to the problems in

global software development. He calls them as “Centripe-
tal Forces”. They are:

(i) Collaborative Technology;
(ii) Team building;
(iii) Leadership;
(iv) Product Architecture and Task Allocation;
(v) Software Development Methodology; and
(vi) Telecommunications Infrastructure

Although these forces are an important contribution,

their ideas are not discussed here because they can not be
directly mapped to tools. They are recommendations that
should be used by managers in order to succeed in global
software development projects. For example, the first
centripetal force suggests that global software developers
should use asynchronous and synchronous collaborative
tools in order to increase the effectiveness of the coopera-
tion. This paper is more concerned about the need to de-
velop such tools and what tools have already been devel-
oped.

Another example is the third centripetal force that dis-
cusses five unique leadership qualities of a software man-
ager that makes him able to handle the multicultural and
dispersed aspects of GSD.

4.2 The Cultural(Contact) Liaison

The cultural liaison is a member of one team that

spends a significant part of time in the other site. Herb-
sleb and Grinter[HG; 1999a, 1999b] verified in their in-
terviews that a liaison is very useful. They detected that
“people who spent a significant amount of time at the
other site, became a contact person.” For example, a con-
tact liaison became responsible for helping developers to
figure out whom to contact to in the other site (an exper-
tise concierge according to [MA, 1998]).

Furthermore, after living in the other site, this liaison
can also explain for his colleagues how things work at the
other sites. He has experience with the other culture in the
context itself, therefore less mystifying. So he can also
facilitate the cultural and linguistic flow of information
bridging cultures, mediating conflicts and resolving mis-

www.manaraa.com

communications.
Finally, the cultural liaison helps to establish trust be-

tween the sites. For example, [BCK+, 2001] describes an
experience in global software development where the
American engineers had a concern about the international
teams, i.e., they are worried if those teams would be able
to develop as needed. Then, some international engineers
spend some time in the US discussing the requirements
for the project, i.e., those engineers became contact liai-
sons. After that, the US team realized that “all of the non-
US teams understood software engineering concepts. The
interaction [with the liaisons] made the staff confortable
with the non-US engineers’ qualifications to build their
network elements”. In fact, according to the authors the
cultural liaison turned to be a key factor on the success of
the project.

The same findings were reported by [HG, 1999b] who
describes a significant improvement in the relationships
between the sites after a visit of some developers. The
skeptical behavior about the other site was alleviated.

These are the reasons why [Car, 1999] and [CA, 2001]
recommend the adoption of this role and suggests that he
should be traveling back and forth between the sites.

4.3 Solutions to the Communication Problem

The ability to communicate can be improved using dif-

ferent technologies such as phone calls, conference calls,
electronic mail, videoconference, etc. However, these
tools and their use must be adapted to face the problems
in GSD. For example, in order to minimize personal
problems related with the need to communicate with part-
ners in the other side of the globe, Motorola adopted con-
ference calls from their houses[BCK+, 2001]. Otherwise,
these technologies can have the opposite effect leading
team members to avoid or circumvent their communica-
tions need.

Meanwhile, theories such as media richness and social
presence theories suggest that computer-based communi-
cation media may eliminate the type of communication
cues that individuals use to convey trust, warmth, atten-
tiveness, and other interpersonal affections[Jar, 1998]. If
these theories are correct, the communication problems
using such technologies can be alleviated but can not be
extinguished while better communication tools are not
developed.

Instant Messaging

Instant Messaging (IM) is a communication technol-

ogy designed to stimulate informal communication (op-
portunistic interactions) among workers at different sites.

This technology has spread very rapidly and it is begin-
ning to infiltrate in the work place[NWB, 2000]. Basi-
cally, it is a near-synchronous computer-based one-to-one
communication technology. In this case, users do not go
into “rooms” to converse with whomever is there; instead
there is a single individual with whom they communicate
(although they may have several concurrent conversa-
tions with different individuals in progress at a given
time). There are several different systems such as AOL’s
Instant Messenger, ICQ and Yahoo Messenger.

Usually, IM systems provide awareness information
about the presence of others. For example, using ICQ you
can create a “Contact List” with the names of your
friends. Whenever they are logged in the ICQ server, you
are notified about it with, for example, a sound signal.
Therefore, you can easily start a conversation with them
by double clicking in the user name in the contact list.

Privacy is also an issue in such systems, therefore you
can also control the published information about you. For
example, in ICQ there is an “invisible” mode where you
are connected and you have information about the others,
but the others are not allowed to access your information.
For them, you are not connected in the ICQ server.

In order to facilitate the informal communication
among distributed software developers the Bell Labs Col-
laboratory Group developed an IM system called Rear
View Mirror[Her, 2000] [Her, 2001]. This system allows
a user to create contact lists receiving information about
the presence of the users in this list. A user can also cre-
ate an access control list, which is the list of users that are
allowed to receive information about him. If a user is not
in this list, he does not receive nay information about the
other. This feature address the privacy issue previously
described.

The system is also integrated with a chat system.
Therefore, a user can initiate a conversation by right
clicking on the other user’s icon, assuming that the co-
worker is present. In this case, an invitation is sent to the
co-worker who can accept or deny it. Unfortunately, there
are no evidences in the literature about the effectiveness
of IM systems.

The Lack of Context

Researchers in the design rationale field identified that

this problem is minimized using artifact integration, i.e.,
associating the artifact with the communication about it.
Artifact integration is very important because the com-
munication about problem solving is densely populated
with references to the artifact that has the problem.

In fact, this was the approach used by ConnectI-
con[Her,2001], a tool from Lucent Technologies. The
goal of this tool is to short the time needed by developers

www.manaraa.com

in two different sites to communicate and solve a prob-
lem. It supports electronic mail and chat and through it
developers can send other information important to the
communication, such as artifacts (test cases, source code,
etc), contact information, etc. This tool is also integrated
with the other tools produced by Lucent.

4.4 Expertise

Expertise Identification

One approach for solving the problem of expertise

identification is proposed by [Mockus,2001]. The idea is
based on the mechanism called by [MA,1998] Historical
Artifacts, who identified in their field study in a software
development company. Basically, a change history of the
important artifacts is stored with the information of who
make the change and when the change was made. Based
on the observation of the logs, one can identify people
who have most experience in changing the artifact. The
developers can also identify the person who most likely
has the “freshest” memory of the artifact[MA, 1998].

The Expertise Browser [Mockus, 2001] was built on
Java as an applet and retrieves the relevant information
form the change management system used by Lucent
Technologies. It presents those people that changed a
selected code unit, where the height of the line for each
person is proportional to the corresponding person’s ex-
perience with the code. Persons who made more change
have their lines larger and presented before the others.
The tools also presents people’s contact information (e-
mail, phone numbers, etc) to help the immediate commu-
nication between developers.

Expertise Selection

Expertise Browser seems to solve the problem of ex-

pertise identification since it points out developers that
seem to have expertise about parts of the code. However,
it does not solve the problem of expertise selection. It
does not provide any information that can help develop-
ers to decide whom to ask. As previously described, this
information is important because it can improve the reso-
lution of the issue. If a developer asks for an expert who
is in vacation or is a very high workload, he can waits for
a long time before realize that he needs to ask to another
expert.

5 Conclusions

Software development performed by traditional co-

located teams is a task innately difficult. It is difficult
because of the need of coordination and communication
among developers. Also because of the complex nature of
the activities executed. When performed in a distributed
setting, this task becomes more challenging. In a global
software development, several problems arise due to the
distance among the developers. For example, the com-
munication is much more difficult because of language
barriers, informal communication among the team mem-
bers can not happen and trust is much more difficult to
achieve.

This paper presented these problems as well as some
solutions that address them. The most important problem
reported in the literature is the lack of informal communi-
cation. Developers in co-located sites heavily use this
type of communication to coordinate their activities; han-
dling exceptions, solving problems and managing
changes. This result suggests that a better understanding
of the process by it happens must be explored in order to
be properly supported in global software development
teams.

6 References

[Ant, 2000] Anthes, G. H. Software Development goes

Global. Computerworld magazine, June 26,
2000.http://www.computerworld.com .

[BCK+, 2001] Battin, R., Crocker, R., Kreidler, J. and
Subramanian, K. Leveraging Resources in Global
Software Development, IEEE Software, vol. 18, Issue
2, March/April 2001, Special Issue in Global Soft-
ware Development. To be published.

[Car, 1999] Carmel, E. The explosion of global software
teams. Computerworld magazine, Dec 08, 1997.
http://www.computerworld.com .

[Car, 2001] Carmel, E. Global Software Teams: a frame-
work for managerial problems and solutions. To ap-
pear as chapter for the book: Global Information
Technology And Electronic Commerce: Issues for
the New Millenium. Edited by P. Palvia, S. Palvia
and E. Roche. To be published by Ivy League Pub-
lishing.

[CA, 2001] Carmel, E. and Agarwal, R. Tactical Ap-
proaches for Alleviating Distance in Global Software
Development. IEEE Software, vol. 18, Issue 2,
March/April 2001, Special Issue in Global Software
Development. To be published.

[CKI88] Curtis, B., Krasner, H. and Iscoe, N. "A Field
Study of the Software Design Process for Large Sys-

www.manaraa.com

tems". Communications of the ACM vol. 31, n. 11,
pp. 1268-1287, November 1988.

[FLM, 1991] Fischer, G., Lemke, A.C., and McCall, R.
Making Argumentation Serve Design, Human-
Computer Interaction, vol. 6, pp. 393-419, 1991.

[Fox, 1999] Fox, R. News Track, Communications of the
ACM, vol. 42, N. 6, pp. 9-10, June, 1999

[Gar, 1999] Garner, R. Round-the-World Teamwork.
Computerworld magazine, May 24, 1999.
http://www.computerworld.com .

[GHP, 1999] Grinter, R, Herbsleb, J. and Perry, D. E. The
Geography of Coordination: Dealing with Distance
and R&D Work, In Proceedings of ACM GROUP
Conference, 1999.

 [Her, 2000] Herbsleb, J. Personal Communication. Octo-
ber, 2000.

[Her, 2001] Herbsleb, J. From Instant Messaging to Ser-
vices for Converged Networks. Invited Talk, Univer-
sity of California, Irvine, March, 2001.

[HG, 1999a] Herbsleb, J. and Grinter, R. Splitting the
Organization and Integrating the Code: Conway’s
Law Revisited. In Proceeding of International Con-
ference on Software Engineering, 1999.

[HG, 1999b] Herbsleb, J. and Grinter, R. Architectures,
Coordination, and Distance: Conway’s Law and Be-
yond, IEEE Software, September/October, 1999.

[HGVF,2001] Herbles,J., Grinter, R.E.,Votta Jr., L., Fin-
holt. T. Geographically Distributed Software Devel-
opment. Draft for review, 2001.

[HKO+, 1995] Herbsleb, J Klein, H., Olson, G. M.,
Brunner, H., Olson, J. S., and Harding, J. Object-
oriented analysis and design in software project
teams. Human-Computer Interaction, vol 10, 249-
292

[HMFG, 2000] Herbsleb, J., Mockus, A. Finholt, T. A.
and Grinter, R. Distance, Dependencies, and Delay
in a Global Collaboration, In Proceedings of ACM
Conference in Computer Supported Cooperative
Work, 2000.

[HMFG, 2001] Herbsleb, J., Mockus, A. Finholt, T. A.

and Grinter, R. An Empirical Study of Global Soft-
ware Development: Distance and Speed, In Proceed-
ing of International Conference on Software Engi-
neering, 2001. To be published.

[Jar, 1998] Jarvenpaa, S. L. Communication and Trust in
Global Virtual Teams. Journal of Computer-
mediated communication, Vol 3. N. 4, 1998.
http://jcmc.huji.ac.il

[Kar, 1999] Karolak, D. W. Global Software Develop-
ment. Chapter 1, “What’s Driving Global Develop-
ment?”, IEEE Press, 1999.

[KS, 1995] Kraut, R. E. and Streeter, L.A., Coordination
in Software Development, Communications of the
ACM, vol. 38. N. 3, pp. 69-81, 1995.

[Lee, 1997]. Lee, J. Design Rationale Systems: Under-
standing the Issues, IEEE Expert, pp. 78-85,
may/june 1997.

[MA, 1998] McDonald, D, and Ackerman, M. A., Just
Talk to Me: A Field Study of Expertise Location, In
proceeding of the 1998 ACM Conference on Com-
puter Supported Cooperative Work, Seattle, WA,
November, 14-18, 1998.

 [Mockus,2001] Mockus, A. Personal Communication,
March, 2001.

[NWB, 2000] Nardi, B.A., Whittaker, S. and Bradner, E.
Interaction and Outeraction: Instant Messaging in
Action, In Proceedings of ACM Computer Supported
Conference in Group Work, pp. 79-88, 2000.

[PSV, 1994] Perry, D.E., Staudenmayer, N.A. and Votta,
L.G. People, Organizations, and Process Improve-
ments. IEEE Software, vol. 11, n. 4, pp. 36-45, 1994.

[Rot, 1998] Rothman, J. Managing Global Teams. Soft-
ware Development Magazine, available at
http://www.sdmagazine.com. August, 1998.

[Ste, 1998] Steen, M. Thinking globally. Nov. 02, 1998.
http://www.infoworld.com/

